β-arrestin-dependent actin reorganization: bringing the right players together at the leading edge.

نویسندگان

  • Jungah Min
  • Kathryn Defea
چکیده

First identified as mediators of G-protein-coupled receptor desensitization and internalization and later as signaling platforms, β-arrestins play a requisite role in chemotaxis and reorganization of the actin cytoskeleton, downstream of multiple receptors. However, the precise molecular mechanisms underlying their involvement have remained elusive. Initial interest in β-arrestins as facilitators of cell migration and actin reorganization stemmed from the known interplay between receptor endocytosis and actin filament formation, because disruption of the actin cytoskeleton inhibits these β-arrestin-dependent events. With growing interest in the mechanisms by which cells can sense a gradient of agonist during cell migration, investigators began to hypothesize that β-arrestins may contribute to directed migration by controlling chemotactic receptor turnover at the plasma membrane. Finally, increasing evidence emerged that β-arrestins are more than just clathrin adaptor proteins involved in turning off receptor signals; they are actually capable of generating their own signals by scaffolding signaling molecules and controlling the activity of multiple cellular enzymes. This new role of β-arrestins as signaling scaffolds has led to the hypothesis that they can facilitate cell migration by sequestering actin assembly activities and upstream regulators of actin assembly at the leading edge. This Minireview discusses recent advances in our understanding of how β-arrestin scaffolds contribute to cell migration, focusing on recently identified β-arrestin interacting proteins and phosphorylation targets that have known roles in actin reorganization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β-Arrestin Regulation of Myosin Light Chain Phosphorylation Promotes AT1aR-mediated Cell Contraction and Migration

Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusio...

متن کامل

WISp39 and Hsp90: actin' together in cell migration

Cell motility is an actin dependent process requiring the formation and extension of lamellipodia or filopodia, and is absolutely essential for many cellular processes, especially for morphogenesis during development. During lamellipodial extension, actin dynamics involve switching between branch formation at the leading edge and proximal severing of existing actin filaments [1]. Actin branch f...

متن کامل

Cofilin under control of β-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning.

Dendritic spines are dynamic, actin-rich structures that form the postsynaptic sites of most excitatory synapses in the brain. The F-actin severing protein cofilin has been implicated in the remodeling of dendritic spines and synapses under normal and pathological conditions, by yet unknown mechanisms. Here we report that β-arrestin-2 plays an important role in NMDA-induced remodeling of dendri...

متن کامل

β-Arrestin-Dependent Deactivation of Mouse Melanopsin

In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indic...

متن کامل

IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2.

OBJECTIVE Endothelial cell (EC) migration is a key event for repair process after vascular injury and angiogenesis. EC migration is regulated by reorganization of the actin cytoskeleton at the leading edge and localized production of reactive oxygen species (ROS) at the site of injury. However, underlying mechanisms are unclear. We reported that IQGAP1, an actin binding scaffold protein, mediat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 80 5  شماره 

صفحات  -

تاریخ انتشار 2011